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1    Introduction 

 

College calculus curriculum reform has been the topic of many research efforts and has gained 

national interest.  There are approximately 600,000 students per year who enroll in calculus in 

four-year colleges and universities of the United States.  Approximately half of these students 

are enrolled in an engineering calculus course.  Of these students, less than half pass the course 

with a D or higher (see [2] and [6]).  Concern for this problem has spurned curriculum 

development in areas that increase emphasis on numerical methods and the use of technology.  

As of 1994, it was estimated that approximately 32% of all calculus students were enrolled in 

some type of reform calculus course (see [8]).   

Technology has allowed curriculum developers to rethink topics in a traditional calculus class; 

there has been a change in emphasis of some topics while others have been eliminated.  But 

more importantly, calculus reform has focused more on how the content is actually taught and on 

the transferability of skills to work in multiple disciplines. 

The calculus curriculum must prepare students to be successful in a variety of programs.  

Successful mathematicians, engineers, scientists, and economists of the future depend on faculty 

who demand quality performance from students at this level of their education.  Excellence does 

not simply materialize in upper-division courses or when these students begin work in the field 

(see [1]).  We believe that in any introductory calculus class, the focus should be raising 

students’ conceptual understanding.  

While there are many topics upon which we could concentrate, in this article we chose to focus 

on the treatment of transcendental functions.  Traditionally, exponential, logarithmic, and inverse 

trigonometric functions are taught after elementary integration and the Fundamental Theorem of 
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Calculus have been introduced.  While this practice is logically sound, it does have several 

shortcomings.  First, these topics are introduced near the end of the first course.  As such, 

students do not have adequate time in the course to become familiar and comfortable with these 

topics.  Second, because of this timing, any serious gaps in students’ knowledge of algebra 

and/or trigonometry will remain essentially undetected until the end of the course.  Finally, the 

pool of available elementary functions is substantially smaller if one excludes building blocks of 

exponential, logarithmic, and inverse trigonometric types from the examples and exercises 

presented earlier in the course.  In an attempt to eliminate some of these shortcomings, we were 

compelled to initiate a change in the way these topics are treated in an introductory calculus 

class.  This approach neither adds nor deletes traditional topics.  Rather it is a reorganization of 

topics, bringing a very early introduction of transcendental functions, presenting them in such a 

way as to build on the students’ prior knowledge, especially their knowledge of algebra and 

trigonometry.  Our quest is to promote greater understanding of the traditional topics.   

As a case has been made for the benefits of an early introduction of transcendental functions, one 

might ask, “Is there any loss associated with the early introduction of these concepts?”  The only 

one which we believe could be argued is “rigor”.  However, most introductory courses lack 

rigor.  It is more important that we consider the needs of the students, the need to focus on 

understanding and communicating mathematics so that they can, in turn, become independent 

thinkers and mathematical problem solvers. 

One of the most difficult, yet most essential tasks in the teaching of calculus (or any other 

mathematics) is helping students to think.  In helping students to think, one must try to link new 

knowledge to what the students already know and understand.  The National Council of 

Teachers’ of Mathematics Curriculum and Evaluation Standards for School Mathematics (see 

[5]) lists “mathematical connections” as one of its four goals.   These connections include 

connections between mathematical topics within a specific course, connections between 

mathematical courses, and connections to the real world.  Using this approach, we attempt to 

help students make those connections and help them to develop a deeper understanding of the 

topics.   

The ideas which we present have probably been in the minds of many mathematicians. Those 

who have thought to rearrange the topics may have certainly presented analogous arguments.  

Indeed, similar work is done in texts where transcendental functions make an early appearance 
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(i.e. before the Fundamental Theorem of Calculus has been introduced) (see [7], [4], and [3]).  

However, we believe these concepts can be introduced even earlier, provided that the definition 

of the derivative, the derivatives of power functions, and the six trigonometric functions have 

been introduced.  Our goal is to give a complete and comprehensive view of the treatment of 

transcendental functions, by allowing the students to develop some of the theory for themselves. 

Many of the following problems are multi-faceted.  They are written to carefully guide students 

while still allowing them to make discoveries on their own.  We believe they will open the door 

for classroom discussion and trust that they can be used in classes where collaborative work is a 

focus.  They are written with the intent that students will learn to communicate mathematically 

and develop a deeper understanding of fundamental concepts.  Explicit and detailed solutions 

follow each problem for the readers’ convenience. 

2    Derivatives 

The derivatives of transcendental functions can be introduced shortly after the development of 

derivatives of all other elementary functions.  The prerequisites for this introduction include the 

study of limits, the definition of the derivative, and a reasonably strong background in algebra 

and trigonometry.  Notice that the rules for differentiation have not yet been examined.  The 

following problems are meant to give a compelling argument for the derivatives of the 

exponential, logarithmic, and inverse trigonometric functions.  

We start with the inequality given below.  It can be verified graphically or numerically.  

Problem 2.1 (The derivatives of ex and ln x)  It can be shown that for all x > −1 we have 

e x e
x

x x+ − ≤ ≤ −1 1 1 

 

1.  Using this fact, compute lim
ln( )

x

x
x→

+
0

1
 

2.  Notice that x→ 0 if and only if ex − →1 0 .   So substitute x = eu − 1  in part (1) and 

now with a bit of extra work, compute limu

ue
u→

−
0

1
 . 

3.  Use parts 1 and 2 to find the derivatives of  f(x) = ex  and  g(x) = ln x. 
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Solution: 

1.  From the inequality above we have that: 

e x e
x

x x+ ≤ + ≤1 1  

and so 

(*)     
x

x
x x

+
≤ + ≤

1
1ln( ) . 

Notice that for x > 0,  (*) yields 

1
1

1
1

x
x
x+

≤
+

≤
ln( )

 

 

and so by the Squeeze Theorem we have that  

lim
ln( )

x

x
x→ +

+
=

0

1
1. 

Now for x < 0, (*) yields 

1
1 1

1
≤

+
≤

+
ln( )x

x x
 

and so by the Squeeze Theorem again, we have that 

lim
ln( )

x

x
x→ −

+
=

0

1
1. 

Thus,  

lim
ln( )

x

x
x→

+
=0

1
1. 

 

2. Let x = eu − 1.  If u→ 0, then x→ 0.  Thus, 

1
1

10 0=
+

=
−→ →lim

ln( )
limx u u

x
x

u
e

 

and so limu

ue
u→

−
=0

1
1  as well. 
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3. By the definition of the derivative we have 

d
dx

e
e e

h
x

h

x h x

=
−

→

+

lim 0  

=
−

→lim
( )

h

x he e
h0

1
 

= ⋅
−

→e
e

h
x

h

h

lim
( )

0

1
 

= ⋅e x 1  

= e x  

For x > 0, we also have by the definition of the derivative 

           
d
dx

xln   =    lim
ln( ) ln( )

h

x h x
h→

+ −
0    

    =    lim
ln

h

x h
x

h→

+





0   

    =    lim
ln

h

h
x

h→

+






0

1
 

    =    lim
ln

h x

h
x

h
x

→ ⋅
+







0

1
1

 

    =     
( )1 1

0x
t
tt⋅
+

→lim
ln

 

    =    
1
x
⋅  1 

    =    
1
x

 

 

Problem 2.2  (Extensions to general exponential and logarithmic functions.)  Let r be a 

positive real constant with r ≠ 1. 
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1.  Use the change of base formula (that is log ( )
ln
lnr x

x
r

= ) and the value of the limit in part 

1 of problem 2.1 to compute lim
log ( )

x
r x

x→

+
0

1
. 

2.  Keeping in mind the methods in part 2 of problem 2.1, compute limu

ur
u→

−
0

1
. 

3.  Find the derivatives of f x r and g x xx
r( ) ( ) log= = . 

 

Solution: 

1.  We have 

   lim
log ( )

x
r x

x→

+
0

1
 =    lim

ln( )
ln

x

x
r

x→

+

0

1

 

      =    
1 1

0ln
lim

ln( )
r

x
xx⋅
+

→  

      =    
1

1
ln r

⋅  

      =    
1

ln r
 

 

2.  Set x = r u − 1.  Then x → 0 if and only if u → 0.  Now, 

1
ln r

 =    lim
log ( )

x
r x

x→

+
0

1
 

      =    lim
log ( )

x
r

u

u

r
r→ −0 1

 

      =    lim x u

u
r→ −0 1

 

So limu

ur
u→

−
0

1
  = ln r. 
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3.  An argument identical to that of part 3 of problem 2.1 establishes that 
d
dx

r r rx x= ⋅(ln )  and  

d
dx

x
x rrlog

ln
=

1
. 

 

It is important to note that these problems provide students with a review of some of the more 

neglected ideas in algebra.  These ideas include inverse functions, (specifically the relationship 

between exponential and logarithmic functions), the properties of exponents and logarithms, and 

the change of base formula.  Problems 2.3 and 2.4 provide another approach to the same subject.  

Some may argue that these problems should be done first.  We believe either approach is 

appropriate and the order of presentation depends more on the class make-up and the preference 

of the individual instructor. 

Problem 2.3 (More extensions to general exponential functions.)  Suppose that f is a 

function such that 

   f (a+b) = f (a) f (b)   for all real numbers a and b. 

Furthermore, suppose that  

lim
( )

x

f x
x

c→

−
=0

1
  for some real number c. 

Show that f is differentiable with ′ =f x cf x( ) ( )  for all x.  Can you think of any examples of 

functions of this type? 

Solution: 

We will show that f is differentiable by explicitly computing its derivative: 

′f x( )  =   lim
( ) ( )

h

f x h f x
h→

+ −
0  

=   lim
( ) ( ) ( )

h

f x f h f x
h→

−
0  

=   f x
f h

hh( ) lim
( )

⋅
−

→0

1
 

=   cf x( )  
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Problem 2.4 (More extensions to general logarithmic functions.)   Suppose that f is a function 

so that   

f a b f a f b( ) ( ) ( )⋅ = +    for all positive real numbers a and b. 

Furthermore, suppose that  

lim
( )

x

f x
x

c→

+
=0

1
  for some real number c. 

Show that f is differentiable with ′ =f x
c
x

( )    for all x > 0.  Can you think of any examples of 

functions of this type? 

Solution: 

Again we will show that  f  is differentiable by explicitly computing its derivative.  So for x > 0 

we have 

    ′f x( )  =  lim
( ) ( )

h

f x h f x
h→

+ −
0  

     =  
h

xf
x
hxf

h

)(1
lim 0

−




 





 +

→  

     =  
h

xf
x
hfxf

h

)(1)(
lim 0

−




 ++

→   

     =  

x
h

x
hf

x h






 +

⋅ →

1
lim1

0   

     =  
1 1

0x
f t

tt⋅
+

→lim
( )

 

     =  
c
x

 

 

In most calculus texts, there is a section devoted to the topic of inverse functions.  Here, the 

development of the derivative of inverse functions is presented.  The theorem on the derivative 

of inverse functions is typically proven using the chain rule.  Problem 2.5 draws upon the 
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geometric interpretation of inverse functions as well as students’ knowledge of algebra to 

illustrate this theorem.  Allowing students to continue making connections with previously held 

knowledge, Problem 2.5 sets the stage for finding derivatives of inverse trigonometric functions. 

Problem 2.5 (The derivative of the inverse function.)  Suppose that f  is differentiable and 

one-to-one.  Let L be the linear function that describes the tangent line on the graph of f at the 

point (a, f(a)).  Assuming that L has a non-zero slope, then L is itself a one-to-one function.  

Furthermore, L−1 is nothing more than the tangent line on the graph f −1  at the point  ( f(a),a). 

1.  Use this observation to deduce that  

( ) ( ( ))
( )

f f a
f a

− ′ =
′

1 1
. 

(Hint:  If L(x) = y = mx + b is any line with slope m ≠ 0, find its inverse.  What is the slope of the 

inverse?) 

  

2.  Let x = f (a) in part 1 of the problem and find a formula for ( ) ( )f x− ′1 . 

 

Solution: 

 

Figure 1 

Notice that by using the geometric interpretation, students can literally see the derivative of the 

inverse function, connecting it to previous knowledge.  (Figure 1)   

1.  Let  L(x) = y = mx + b be the tangent line on the graph of f at the point (a, f(a)).  Then,  

m = ′f a( )  and as long as m ≠ 0, we compute L x−1 ( )  by solving the equation x = my + b for y. 
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Indeed L x−1 ( )  = y = 
m
bx

m
−

1  and so the slope of L−1  is 
)(

11
afm ′

= .  Since 1−L  is the tangent 

line on the graph of f −1  at the point (f (a), a), we conclude that its slope ))(()(
)(

1 1 aff
af

′=
′

− . 

2.  Recall that x = f (a) if and only if  a = f −1 (x).  So by part 1, 

( ) ( )
( ( ))

.f x
f f x

−
−′ =

′
1

1

1
  

This result is now used in the development of the derivative of inverse trigonometric functions. 

Problem 2.6   Use the result in problem 2.5 to find the derivatives of  

1.   f x x( ) tan= −1  in ),( ∞−∞  

2.  g x x( ) sin= −1   in  (-1,1) 

3.  h x x( ) sec= −1   in  ),1()1,( ∞∪−−∞  

 

Solution: 

1.  For any real x we apply problem 2.5 to obtain 

d
dx

x
x

tan
sec (tan )

−
−=1

2 1

1
. 

 By the use of the trigonometric identity sec tan2 21θ θ= + , we now have  

d
dx

x
x x

tan
tan (tan )

−
−=

+
=

+
1

2 1 2

1
1

1
1

. 

 

2.  Let x be in (−1, 1).  Then thanks to problem 2.5 again we have  

)(sincos
1sin 1

1

x
x

dx
d

−
− = . 

Recall the fundamental Pythagorean identity sin cos2 2 1θ θ+ = .  Thus for any number θ , 

θθ 2sin1cos −±= .  Since the cosine function is positive in the first and fourth quadrants, we 

have that for θ  in ( , )− π π
2 2 , θθ 2sin1cos −= .  Keeping this in mind, the fact that sin −1 x  is 

in ( , )− π π
2 2 , yields cos(sin ) sin (sin )− −= − = −1 2 1 21 1x x x .  So 
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d
dx

x
x

sin− =
−

1
2

1

1
. 

As you can see, both these derivatives were found without the use of the chain rule or implicit 

differentiation. 

 

3.  Let x be in (−∞, −1) ∪ (1, ∞).  By problem 2.5 

   
d
dx

xsec−1  =   
)(sectan)(secsec

1
11 xx −−  

          =   
)(sectan

1
1 xx −  

Recall again that sec tan2 21θ θ= +  and so 1sectan 2 −±= θθ .  Hence, 

1)(sectan 21 −±=− xx .  Now sec−1 x  is in ( , )0 2
π  for x in (1, ∞) and sec−1 x  is in ( , )π π2 for x 

in (−∞, −1), while the tangent function is positive on the first quadrant and negative on the 

second.  Thus, 

    






−<−−

>−
=−

1if1

1if1
)(sectan

2

2
1

xx

xx
x  

So, for any x in (−∞, 1) ∪ (1, ∞),  x tan(sec )− = −1 2 1x x x .  Hence 

    
d
dx

xsec−1   =   
1

12x x −
. 

It is often the case for students to wonder whether all “hard” limits, namely those that cannot be 

evaluated by straight substitutions, arise as derivatives.  As we know, this may be true in some 

sense, L’Hospital’s rule being the reason.  It is perhaps noteworthy that a “utility grade” form of 

L’Hospital’s rule is also within reach.  That is, nothing but the definition of the derivative is 

needed to do the following problem. 

Problem 2.7  (A primitive version of L’Hospital’s rule.)  Suppose that f and g are 

differentiable at x = a with f(a) = g(a) = 0.  Suppose that 0)( ≠′ ag . Find  
)(
)(lim

xg
xf

ax→ . 

Solution: 

This is actually quite direct.  Since f and g are at x = a with f(a) = g(a) = 0, we have that 
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    lim
( )
( )x a

f x
g x→   =  lim

( ) ( )
( ) ( )x a

f x f a
g x g a→

−
−

 

      =  

ax
agxg

ax
afxf

ax

−
−
−
−

→ )()(

)()(

lim  

which by definition of the derivative together with the fact that 0)( ≠′ ag , gives us 
)(
)(

ag
af

′
′

. 

 

3   Rules of Differentiation 

After the rules of differentiation have been discussed, the derivatives of the exponential and 

logarithmic functions can be revisited.  These derivatives make a disguised appearance in the 

next two problems.  We include this section mainly as reinforcement of crucial ideas for 

students. 

Problem 3.1 (The derivatives of logarithms revisited.)  Suppose that f is differentiable on  

(0, ∞).  Assume that for all a > 0,  b > 0 we have 

(*)   f(a ⋅ b) = f(a) + f(b). 

Furthermore, suppose that ′ =f c( )1  for some constant c. 

1.  Use the chain rule to show that for any fixed number a we have )()( axfaaxf
dx
d ′= . 

2.  Use (*) to show that )()( xfaxf
dx
d ′= . 

3.  Find ′f a( ) .  Can you think of examples of functions of this type? 

 

Solution: 

1.  This is already done.  By the chain rule )()( axfaaxf
dx
d ′= . 

2.  By (*)  )()())()(()( xfxf
dx
dxfaf

dx
daxf

dx
d ′==+= . 

3.  By parts 1 and 2, we have that af ax f x′ = ′( ) ( )  for all x > 0 and all a > 0.  So for x = 1 we 

have af a f′ = ′( ) ( )1 .  Since ′f ( )1  is a constant, c, 
a
caf =′ )( . 
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Problem 3.2  (The derivatives of exponential functions revisited.)  Suppose that f is 

differentiable.  Assume that for all numbers a and b we have 

(*)  f(a+b) = f(a)⋅ f(b). 

Furthermore, suppose that ′ =f c( )0  for some constant c. 

1.  Use the chain rule to find )( axf
dx
d + . 

2.  Use (*) to show that )( axf
dx
d + = f a f x( ) ( )⋅ ′ . 

3.  Find ′f a( ) .  Can you think of examples of functions of this type? 

Solution: 

1.  By a trivial application of the chain rule )( axf
dx
d + = ′ +f x a( ) . 

2.  By (*)  )()()()())()(()( xfafxf
dx
dafxfaf

dx
dxaf

dx
d ′⋅=⋅=⋅=+ . 

3.  By parts 1 and 2, we have that ′ + = ⋅ ′f x a f a f x( ) ( ) ( )  for all real numbers x and a.  So for 

x = 0 we have ′ = ⋅ ′f a f a f( ) ( ) ( )0 .  Since ′f ( )0  is a constant, c, ′ = ⋅f a c f a( ) ( ) . 

 

4   Conclusion 

For many students, the topics of calculus are isolated and disjoint.  For some, they are at best a 

set of procedures and routine practices.  Such is the case when transcendental functions are 

isolated from others.  A key to improving instruction is to help students make connections 

among the various topics.   

A deeper understanding and appreciation of mathematics by students is the objective of any 

change in the mathematics curriculum.  In this article, we have provided an alternative treatment 

of transcendental functions in introductory calculus.  It is just that, an alternative method.  While 

we believe it addresses some of the shortcomings that we find when transcendental functions are 

presented later in the course, only further research and assessment will enable us to determine 

whether it is a better treatment. 

The aims of teaching mathematics need to include empowerment of learners to create their own 

mathematical knowledge.  This can only be done by placing more emphasis on developing 
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student understanding of concepts, building their problem solving and reasoning skills and 

helping them to make connections among concepts.  We believe this method helps students to 

begin making these connections, by allowing them to build upon prior knowledge and use this 

knowledge to see how further concepts are developed. 
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